Research on high-temperature heat receiver in concentrated solar radiation system
نویسندگان
چکیده
منابع مشابه
Optimization of Central Receiver Concentrated Solar
In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants and (ii) optimization of heliostat field layouts for any terrain. Additionally, optimization of heliostat canting, is presented as an application of the heliostat layout optimization model. Using the site selection model, suitable sites are ...
متن کاملExergy and Thermoeconomic Analyses of Central Receiver Concentrated Solar Plants Using Air as Heat Transfer Fluid
Claudia Toro 1,*, Matteo V. Rocco 2 and Emanuela Colombo 2 1 CNR Institute of Environmental Geology and Geoengineering, c/o Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome 00184, Italy 2 Politecnico di Milano, Milan 20156, Italy; [email protected] (M.V.R.); [email protected] (E.C.) * Correspondence: [email protected]; Tel.: +3...
متن کاملEffect of Opening Ratio and Operating Temperature on Heat Losses for Cavity Receiver of Solar Concentrator
In this paper effect of opening ratio and operating temperature on convective and radiative losses from cavity receiver of solar concentrators are presented. Convective and radiative
متن کاملHeat Transfer and Geometrical Analysis of Thermoelectric Converters Driven by Concentrated Solar Radiation
A heat transfer model that couples radiation/conduction/convection heat transfer with electrical potential distribution is developed for a thermoelectric converter (TEC) subjected to concentrated solar radiation. The 4-leg TEC module consists of two pairs of ptype La1.98Sr0.02CuO4 and n-type CaMn0.98Nb0.02O3 legs that are sandwiched between two ceramic Al2O3 hot/cold plates and connected electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPJ Web of Conferences
سال: 2017
ISSN: 2100-014X
DOI: 10.1051/epjconf/201714302096